

Large scale and hybrid computing with CP2K

Joost VandeVondele
Nanoscale Simulations, ETH Zurich

Sustainable energy production

A grand challenge for society which will
require novel materials engineered with

atomistic precision

Grätzel, Nature (1991,2001)

Novel simulation tools can contribute towards
rational design of complex systems

Modeling complex systems

Density functional theory (DFT) & computational methods
 (1998, Nobel Prize, Walter Kohn- John A. Pople)

A computationally tractable reference system of non-interacting particles
can be used to obtain all properties (in particular the density and energy) of
a true electronic system. The required external potential (Vxc) exists but is
only known approximately.

Modeling complex systems

© nobelprize.org (1998)

scale Multi-scale

Empirical models

Enhanced sampling

S
IZ

E
T

IM
E

~10 atoms
static

~1'000 atoms
~1-100 ps

~100'000 atoms
~1-1000 ns

Reduced dimensionality
All timescales

What is CP2K ?

CP2K is a freely available program to perform atomistic
and molecular simulations of solid state, liquid, molecular
and biological systems. It provides a general framework
for different methods such as e.g. density functional
theory (DFT) [...]

On our web page since the initial version in 2004-10-16

Gaussian and plane waves:
GPW in CP2K

•Primary basis: Gaussians
- compact
- sparse Hks (and P)
- Many terms analytic

•Auxiliary basis: Plane waves
- regular grid for e- density
- FFT for Poisson equation
- No four center integrals needed

J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm. 167, 103 (2005).
Lippert, G; Hutter, J; Parrinello, M. Mol. Phys., 92 (3), 477-487 (1997).

The GPW algorithm : compute the GGA Kohn-Sham matrix
 in O(N) time, PBC are natural.

Chemistry

Physics

CP2K: the swiss army knife of
molecular simulation

●A wide variety of models Hamiltonians
● classical
● semi-empirical
● local and non-local DFT
● Combinations (e.g. QM/MM)

●Various algorithms
● Molecular dynamics & Monte Carlo

● NVE, NVT, NPT
● Free energy and PES tools
● Ehrenfest MD

●Properties
● Vibrational
● NMR, EPR, XAS, TDDFT

●Open source & rapid development
● 900.000 lines of code

CP2K: the swiss army knife of
molecular simulation

●A wide variety of models Hamiltonians
● classical
● semi-empirical
● local and non-local DFT
● Combinations (e.g. QM/MM)

●Various algorithms
● Molecular dynamics & Monte Carlo

● NVE, NVT, NPT
● Free energy and PES tools
● Ehrenfest MD

●Properties
● Vibrational
● NMR, EPR, XAS, TDDFT

●Open source & rapid development
● 700.000 lines of code

What is CP2K: team
With contributions from: Axel Kohlmeyer
Barbara Kirchner Ben Slater Chris
Mundy Fawzi Mohamed Florian
Schiffmann Gerald Lippert Gloria
Tabacchi Greg Schenter Harald Forbert
Iain Bethune William Kuo Ken Bagchi
Sundaram Balasubramanian Jochen
Schmidt Jens Thar Jürg Hutter Matthias
Krack Matt Watkins Marcella Iannuzzi
Manuel Guidon Matthew McGrath
Thomas Chassaing Thomas Heine
Thomas Kuehne Teodoro Laino Urban
Borstnik Joost VandeVondele Benjamin
Levine Luca Bellucci Ari Seitsonen Louis
Vanduyfhuys Mathieu Salanne Michele
Ceriotti Lukasz Walewski Michael
Steinlechner Rodolphe Vuilleumier
Sebastiano Caravati Valery Weber Kevin
Stratford Toon Verstraelen Marcel Baer
Alessandro Laio Stefan Goedecker Luigi
Genovese Thierry Deutsch Dieter Gleich
Reinout Declerck Kurt Baarman Mauro
DelBen Mandes Schönherr Yannik Misteli
Fabio Sterpone Gerd Berghold Pietro
Ballone Walter Silvestri Pekka Manninen
Francois-Xavier Coudert Christiane
Pousa Michele Parrinello Michiel Sprik
Ilja Siepmann Michel Waroquier

Ten years of development at 200 lines / day = O(1M) SLOC, with a large base of contributors

How do we collaborate ?

●SVN
●Email
●Meet & Talk

An animated view of SVN history

CP2K: science (I)

Electronic structure of nanoparticles

CP2K: science (II)

Disordered and frustrated materials

CP2K: science (III)

Structure prediction of metal organic frameworks

CP2K: science (IV)

Functionalized solid/liquid interfaces

CP2K: algorithms

The power & challenge of CP2K:
a wide range of algorithms

with good scaling properties

●Regular grids: halo-exchange, 3D FFT, Poisson solver, multigrids
●Dense Linear Algebra: Multiply, Diagonalization, Cholesky,...
●Sparse Linear Algebra: Matrix Multiply
●Particles: time integration, Monte Carlo sampling
●Chemical: 4 center integrals, HFX, MP2, XC, ...

a) Depending on method and system size various kernels will dominate
b) Depending on the dominating kernel, particular hardware might be suitable
c) If several kernels dominate optimization is more of a challenge

A single kernel rarely dominates
Scaling is O(N)...O(N**5)

Modern Compute Resources
for atomistic simulation

Perform calculations that

+/- complete faster
- AIMD: at the limit of strong scaling (network)
+ Ensemble simulations: connect to experiment

 + are cheaper
+ are technically better converged (grids, basis, sampling)
+ are based on more accurate theory
+ are based on larger models

CP2K on CSCS
production hardware

For a typical user benchmark, the per node (~ per Watt) performance
has improved significantly.

CP2K on CSCS
production hardware

Per core, we can fight the clock-frequency trend....
XE6 in the above graph is 32 cores per node.

Complex hardware:
NUMA nodes with PCI devices

corecore

corecore

corecore

corecore

corecore

corecore

MC MC

socket

MemoryMemory

 NUMA Within Socket

PPM M

PPM M

PPM M

PPM M

PCI PCI

GPU GPU

PCI devices (network / GPU)

Should we leave thread placement,
Task placement and memory management to the system ?

Complex hardware:
Network topology

3D Torus on the XK6

'Nearest neighbor comms
on a 2D grid'

Need to think about
process layout or we
need better networks.

Entropy rules: sampling

Entropy and free energy are absolutely
important properties, and required to
make contact with experiment.

They can be computed by generating
ensembles of configurations
(dynamics / Monte Carlo)

High throughput computing is the best
way to achieve good sampling and
converged statistics.

More accurate theory:

From 'GGA' to 'HFX' to 'MP2'

Exchange & correlation functionals

Mundy, Kathmann, Rousseau, Schenter,
VandeVondele, Hutter, SCIDAC reviews (spring 2010).

Exchange and correlation functionals of improving can
be constructed by adding new ingredients.

Each rung on the ladder improves accuracy, but also
increases complexity

1) GGA: only relies on the electron density and its
gradients (semi-local)

2) Hyper-GGA: hybrid functionals, includes density
and the single particle orbitals directly in a non-local
way through Hartree-Fock exchange (HFX)

3) Double hybrids: include some MP2-like terms

Hartree-Fock exchange

 2'825 atoms
→ 31'247 basis functions
→ 976'375'009 elements in P
→ 953'308'158'199'750'081 integrals

Exa-Pet-Ter-Gig-Meg-Kil

An easy term in Gaussian basis sets, but brute force scaling as O(N4)

Do we need exa-scale computing, or can we be scientist ?

O(N4) → O(N)

O(N2)Cauchy-Schwarz screening O(N2)Cauchy-Schwarz screening

Operator screening Operators other than 1/r

Based on the fact that for large systems either the integrals
Or the density matrix become zero (to within a threshold eps)

O(N)
Density matrix screening P decays exponentially O(N)

O(N) HFX: measurements

Linear scaling is key thousands of molecules possible
On 'standard' cluster hardware in minutes.

Parallel implementation: OMP/MPI

E=vT(Mv) ?

Distribute the matrix M (dim: 109 x 109), replicate the vector v

Simple communication pattern (v is distributed in GGA mode)
allows for exploiting the full symmetries (8x speedup)

v and (Mv) can be rather large vectors (109 elements)

Exploit current architectures (e.g. 16 cores with 16Gb per node) → MPI/OpenMP
Shared v and (Mv), v is read-only, (Mv) is atomically updated
Exploit that only O(N) entries of v are non-zero → sparse storage for v
Remaining memory used for storing M.

Advanced load balancing model used

Many-core era: OMP/MPI

Here computer centers can help! EPCC (EPSRC/PRACE funded) did so.

Main benefits:
➔Increase memory per MPI task
➔Extend the scalability plateau
➔Access >10000s of cores
➔Interface to GPU (XK6)
➔Speedups for some parts of the code

Main issues:
➔Loop level OMP is not sufficient
➔Analyzing OMP performance difficult
➔Non-deterministic threading bugs
➔Libraries (scalapack) poorly threaded
➔Compilers & tools

Rosa XE6 data

Parallel efficiency

10 steps of MD, 64 H
2
O, 2560 BF,

OpenMP: 8 threads/node

HFX

Full code

Provided enough compute power,
Hybrid simulations run essentially
as fast as GGA
(9s / BOMD step @ 4096 cores)

HFX code out-scales the
Remaining (GGA) part of CP2K

HFX remains computationally much more demanding than GGA DFT (10x?)
A good parallel implementation is mandatory

In-core integral compression

Almost all simulations are performed using an in-core algorithm
→ 10x speedup is observed.
Highly efficient scheme: index free and lossy compression

Guidon, M; Schiffmann, F; Hutter, J; VandeVondele, J. 2008 ; JCP 128(21): 214104

LiH: Parallel efficiency &
in-core operation

Paier J; Diaconu CV; Scuseria GE; Guidon M; VandeVondele J;
Hutter J. 2009: PRB 80(17): 174114
Guidon M; Hutter J; VandeVondele J. 2009: JCTC 5(11): 3010-3021

Initial speed:
Using CPU efficiently

Superlinear speedups:
Using all memory

Good scale-out:
Using network

Auxiliary Density Matrix Methods
(ADMM)

For certain density matrices HFX can be computed very efficiently
(e.g. small basis sets or increased sparsity)

Transform an expensive matrix into a cheap one,
use a GGA for estimating the difference

One example: wavefunction fitting, using an auxiliary basis

Guidon M; Hutter J; VandeVondele J; JCTC 6(8): 2348-2364

ADMM: performance

A fully solvated protein computed within minutes using hybrid functionals

Computer science must be combined with domain knowledge!

Guidon M; Hutter J; VandeVondele J; JCTC 6(8): 2348-2364

The DFT model: a solvated protein

Standard hybrid ADMM based hybrid

Møller-Plesset Perturbation Theory

The energy:

Two electron integrals over canonical molecular orbitals (MO):

The four index transformation, going from AO to MO

MP2 is relatively expensive O(N5), not easy to parallelize efficiently,
and somewhat tricky in the condensed phase for an AO code.

GPW-MP2
A Gaussian and plane waves approach to MP2

Directly obtain half transformed integrals using the GPW approach:

Leads to a highly efficient parallel implementation.

Del Ben M, Hutter J, VandeVondele J: to be submitted

Parallel efficiency

CO
2
crystal (32 molecules)

cc-QZVP basis (5184 BF)
Canonical GPW-MP2 calculation

MP2 time: 9min.
parallel efficiency: 80%
On 102400 cores

Larger model systems

Linear Scaling SCF

22nm 22nm

22
nm

4n
m

Traditional approaches to solve the self-
consistent field (SCF) equations are O(N3)
limiting system size significantly.

A newly implemented algorithm is O(N),
allowing for far larger systems to be studied.

Largest O(N3) calculation with CP2K
(~6000 atoms)

Largest O(N) calculation with CP2K
(~1'000'000 atoms)

Linear Scaling SCF

New regime: small devices, heterostructures,
interfaces, nano-particles, a small virus.

With Mathieu Luisier

Solvated STMV: 1M

Gate-all-around FET

1.5M atoms
Anatase nanocrystal

Caplovicova et al.
App. Cat. B, 224, 117

Sign matrix iterations

A simple iterative scheme (Newton-Schultz) gives sign(A):

The density matrix (P) is function of H

Using only sparse matrix matrix multiplies (not SPMV!)
linear scaling can be obtained

A dedicated sparse matrix multiply library is extremely important
This library is being ported to GPUs

Millions of atoms
in the condensed phase

Bulk liquid water. Dashed lines represent ideal linear scaling.

Minimal basis sets:
DFT, NDDO, DFTB

Accurate basis sets, DFT
46656 cores

9216 cores

The electronic structure
O(106) atoms in < 2 hours

VandeVondele, Borstnik, Hutter, JCTC

Towards O(1) :
constant walltime with proportional resources

Total time

Local multiplies

Communication

Overhead

Local multiplies constant (OK!).

Overhead & Communication
 Grows with sqrt(N)
 Needs a replacement for Cannon

Work is underway to replace the Cannon algorithm with something new!
Retain the sqrt(N) max comm, yield constant comm in the limit.

Stringent test:
Small blocks, large overhead
Very sparse matrices
Running with 200 atoms / MPI task

DBCSR: a sparse matrix library
Distributed Blocked Compressed Sparse Row
Distributed Blocked Cannon Sparse Recursive

Target the application: atoms → Blocks (e.g. 5x5, 13x13, 23x23)
 Linear scaling → Sparse
 Fully dense → Cannon
 Large scale → Distributed

High Performance → Recursive

Cannon style communication
on a homogenized matrix for
strong scaling

The local multiplication

A two stage process:
● Index building: figure out what to calculate
● Computation: Do the calculations

A cache-oblivious
recursive approach

LIBSMM: an autotuned
CPU library for small matrix
multiplication: 2x faster than
optimized blas for applications

An auto-tuned
small matrix muliply library

C=C+A x B

●Various 'strange' sizes needed
● 5x5, 5x13, 13x13 ...

●Hand-optimization
● too difficult
● too time-consuming
● not-flexible enough (new chips)

●Auto-generate a separate library
● Easy
● Fast
● Flexible
● Now available

Libsmm outperforms optimized blas : 2x-10x

Autogeneration – Autotuning … a powerful approach to performance (Atlas, FFTW, ...)

GPU Kernel Description

Compute a batch Cij, Aik, Bkj of small matrix block products (5x5 .. 23x23)
Not too different from batched dgemm (Ci=Ci+Ai*Bi) available in cudablas 4.1

CUBLAS Batched dgemm reaches
Only ~50 Gflops for 23x23

Need to:
1) exploit dependencies
 (data reuse)
2) Better compute kernel

Sort batch on Cij so we have only 2 data read/writes instead of 4.
Hand-optimize a CUDA kernel for size 23x23 (playing with registers / occupation etc)

The GPU port of DBCSR (I)

Not so easy … ran into many issues with tools
 … but received excellent support from Cray/NVIDIA/CP2K team

●Up to 3x performance slowdown in MPI for dynamically linked binaries
● Fix: use a (not yet released) Cray patched libudreg.so.0 (?)

●ran into CCE miscompilation
● Fix : compile selected file at -O0

●problems with (virtual) memory management
● Fix: use hugepages

●A CP2K bug
● Fix: add a memcpy.

●Up to 10X threading performance difference between compilers
● Investigating (not crucial for final benchmark)

●Cuda-memcheck crashes/gave false positives
● Ignore after checking carefully

●Usual tools (valgrind or CP2K internal timing/memory trace) do not work
● accept

Not a particularly time efficient procedure...
Not for every developer …
Not without excellent support ….

The GPU port of DBCSR (II)

Open Challenges:

●Only one process per node can connect to GPU.
Need a functional OMPed code as well

●Work sharing between GPU and CPU not yet optimal.
Have the CPU also do stacks of multiplications ?

●Sending data panels to GPU not yet overlapping with any work
 Could be started as soon as MPI completes. Maybe double buffering

●GPU Kernel optimized for 23x23 matrices (water molecule). We need many sizes.
Needs an auto-tuning and auto-generating framework for the GPU

 A strategy to deal with smaller blocks.

GPU multiplication benchmark

Benchmark matrix-matrix multiplication with random [0..1]
matrix, quasi-realistic fill-in pattern

Hybrid MPI+OpenMP+CUDA Fortran/C code

NREP=6: Matrix dimension N=159’000;
 50% occupation

<370Mb of data per node on 256 nodes....

CPU (1xIL, XK6): 38 GFLOPS
CPU (2xIL, XE6): 77 GFLOPS (2.3-2.5 GFLOPs/core)
GPU : 114 GFLOPS (110 – 125 GFLOPs)

Current Kernel performance 170 Gflops.

Estimated Keppler performance: 1.6x speedup on kernel

Performance difference: time in MPI

(data Peter Messmer)

GPU application benchmark

MPI performance (bandwidth) appears to be the bottleneck (e.g. 50% slowdown
without custom rank reordering) :

● Still need to figure out MPI performance (incl. effectiveness of overlap).
● Is the dynamic linking still an issue ?
● Any interference between GPU+CPU ?
● One Communication thread per node enough ?

● >400 multiplications for 1 run.
● Additional thresholding in multiplications (less flops for same data)
● This week's results.... subject to change

20736 atoms (6912 water molecules), matrix dim 159000, on 576 nodes XK6,
~60 matrix multiplications / iter.

XK6 without GPU : 1965s per iteration
XK6 with GPU : 924s per iteration

Speedup 2.12x

Further thoughts and conclusions

Computational atomistic modeling is a lot of fun!

A wide range of algorithms is important for DFT simulations

Implementation, algorithm and theory all have their role to play

Good theories and algorithms require knowledge of the scientific problem being solved

Understanding the hardware is important, but challenging given the rapidly changing field

Hierarchical parallelism will be needed to scale to 1000s of nodes.

GPU/MIC/etc. coding is still challenging, will improve as a wider range of software is ported

Large scientific codes will increasingly benefit from new development methodologies.

The Fortran/MPI combo is still the level you can expect in academia

Acknowledgements
Zürich
Juerg Hutter
Urban Borstnik
Christian Pousa
Mauro Del Ben
Manuel Guidon
Valery Weber

CSCS&EPCC&
CRAY&NVIDIA
Iain Bethune
Neil Stringfellow
Peter Messmer
John Levesque
Roberto Ansaloni

Flops&More
CSCS
ORNL
UZH
ETH
SNF
INCITE
EU-FP
DEISA
PRACEYou for your attention!

World-wide
CP2K Team

PNL&Minnesota
Chris Mundy
PNL&Minnesota
Chris Mundy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	CP2K: Quickstep / GPW
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

