
 

White Paper 

Intel® Xeon Phi™ Coprocessor 

DEVELOPER’S QUICK START GUIDE 

Version 1.8 

  



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

2 

 

Contents 

Introduction ........................................................................................................................................................................................................ 4 

Goals ............................................................................................................................................................................................................................. 4 

This document does: ...................................................................................................................................................................................... 4 

This document does not: ............................................................................................................................................................................. 4 

Terminology .............................................................................................................................................................................................................. 4 

System Configuration .................................................................................................................................................................................... 5 

Intel® Xeon Phi™ Software ................................................................................................................................................................................ 5 

Intel® Many Integrated Core Architecture Overview ........................................................................................................................ 7 

Administrative Tasks ...................................................................................................................................................................................... 8 

Preparing Your System for First Use .......................................................................................................................................................... 8 

Steps to install the driver and start the card.................................................................................................................................. 8 

Steps to install the Software Development tools ........................................................................................................................ 9 

Updating an Existing System ....................................................................................................................................................................... 10 

Updating a system that already has an Intel® Xeon Phi™ Coprocessor ........................................................................ 10 

Regaining Access to the Intel® Xeon Phi™ Coprocessor after Reboot ................................................................................... 11 

Restarting the Intel® Xeon Phi™ Coprocessor If It Hangs .............................................................................................................. 11 

Monitoring the Intel® Xeon Phi™ Coprocessor ..................................................................................................................................... 12 

Running an Intel® Xeon Phi™ Coprocessor program from the host system ........................................................................ 12 

Working directly with the uOS Environment Intel® Xeon Phi™ Coprocessor ...................................................................... 12 

Useful Administrative Tools ......................................................................................................................................................................... 13 

Getting Started/Developing Intel® Xeon Phi™ Software .............................................................................................................. 13 

Available Software Development Tools / Environments .............................................................................................................. 13 

Development Environment: Available Compilers and Libraries ......................................................................................... 13 

Development Environment: Available Tools ................................................................................................................................. 14 

General Development Information ............................................................................................................................................................ 14 

Development Environment Setup ....................................................................................................................................................... 14 

Documentation and Sample Code ....................................................................................................................................................... 15 

Build-Related Information ....................................................................................................................................................................... 16 

Compiler Switches and Makefiles ........................................................................................................................................................ 16 

Debugging During Runtime ..................................................................................................................................................................... 16 

Where to Get More Help ........................................................................................................................................................................... 17 

Using the Offload Compiler – Explicit Memory Copy Model ......................................................................................................... 17 

Reduction .......................................................................................................................................................................................................... 17 

Creating the Offload Version ................................................................................................................................................................. 18 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

3 

 

Asynchronous Offload and Data Transfer ..................................................................................................................................... 19 

Using the Offload Compiler – Implicit Memory Copy Model ......................................................................................................... 19 

Native Compilation ............................................................................................................................................................................................. 21 

Parallel Programming Options on the Intel® Xeon Phi™ Coprocessor ..................................................................................... 22 

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* ........................................................................ 22 

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* + Intel® Cilk™ Plus Extended Array 

Notation ............................................................................................................................................................................................................. 23 

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: Intel® Cilk™ Plus ........................................................... 24 

Parallel Programming on Intel® Xeon Phi™ Coprocessor: Intel® Threading Building Blocks (Intel® TBB) ..... 24 

Using Intel® MKL ................................................................................................................................................................................................... 26 

SGEMM Sample............................................................................................................................................................................................... 26 

Intel® MKL Automatic Offload Model ........................................................................................................................................................ 28 

Debugging on the Intel® Xeon Phi™ Coprocessor............................................................................................................................. 28 

Performance Analysis on the Intel® Xeon Phi™ Coprocessor ..................................................................................................... 28 

About the Authors........................................................................................................................................................................................ 29 

Notices ............................................................................................................................................................................................................... 30 

Performance Notice ..................................................................................................................................................................................... 31 

Optimization Notice ..................................................................................................................................................................................... 31 

 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

4 

 

Introduction 

This document will help you get started writing code and running applications on a system (host) that includes 

the Intel® Xeon Phi™ coprocessor based on the Intel® Many Integrated Core Architecture (Intel® MIC Architecture). 

It describes the available tools and includes simple examples to show how to get C/C++ and Fortran-based 

programs up and running. 

 

This document is available at http://software.intel.com/mic-developer under the “Overview” tab.  

Goals 

This document does: 

1. Walk you through the Intel® Manycore Platform Software Stack (Intel® MPSS) installation. 

2. Introduce the build environment for software enabled to run on Intel Xeon Phi coprocessor. 

3. Give an example of how to write code for Intel Xeon Phi coprocessor and build using Intel® Parallel 

Studio XE 2015. 

4. Demonstrate the use of Intel libraries like the Intel® Math Kernel Library (Intel® MKL). 

5. Point you to information on how to debug and profile programs running on a coprocessor. 

6. Share some best known methods (BKMs) developed by users at Intel. 

This document does not: 

1. Cover each tool in detail. Please refer to the user guides for the individual tools. 

2. Provide in-depth training. 

Terminology 

Host – The Intel® Xeon® platform containing the Intel Xeon Phi coprocessor installed in a PCIe* slot. As of Intel 

MPSS 3.4, the operating systems (OS) supported on the host are Red Hat Enterprise Linux* 6.3, Red Hat 

Enterprise Linux* 6.4, Red Hat Enterprise Linux* 6.5, Red Hat Enterprise Linux* 6.6, Red Hat Enterprise Linux* 

7.0, SUSE Linux* Enterprise Server SLES 11 SP2, and SUSE Linux* Enterprise Server SLES 11 SP3. The user will 

have to install the OS. 

Target – The Intel Xeon Phi coprocessor and corresponding run-time environment installed inside the 

coprocessor. 

Micro Operating System (uOS) – The Linux-based operating system and tools running on the Intel Xeon Phi 

coprocessor.  

Instruction Set Architecture (ISA) – The part of the computer architecture related to programming, including the 

native data types, instructions, registers, addressing modes, memory architecture, interrupt and exception 

handling, and external I/O (Input/Output)  

Vector Processing Unit (VPU) – The portion of a CPU responsible for the execution of SIMD (single instruction, 

multiple data) instructions. 

Native Acceleration (NAcc) – A mode or form of Intel MKL in which the data being processed and the Intel MKL 

function processing the data reside on the coprocessor. 

Offload Compilers – The Intel® C/C++ Compiler and Intel® Fortran Compiler can generate binaries for both the 

host system and the Intel Xeon Phi coprocessor. The offload compilers can generate binaries that will run only 

http://software.intel.com/mic-developer


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

5 

 

on the host, only on the coprocessor, or paired binaries that run on both the host and the coprocessor and 

communicate with each other. 

Intel MPSS –the user- and system-level software that allows programs to run on and communicate with the Intel 

Xeon Phi coprocessor. 

Symmetric Communications Interface (SCI) – The mechanism for inter-node communication within a single 

platform, where an node is an Intel Xeon Phi coprocessor or an Intel Xeon processor-based host processor 

complex. In particular, SCI abstracts the details of communicating over the PCIe bus (and controlling related Intel 

Xeon Phi coprocessor hardware) while providing an API that is symmetric between all types of nodes 

System Configuration 

The configuration assumed in this document is an Intel workstation containing two Intel Xeon processors, one 

or two Intel Xeon Phi coprocessors attached to a PCIe x16 bus, and a GPU for graphics display. 

Intel® Xeon Phi™ Software 

 

Figure 1: Software Stack 

The Intel Xeon Phi coprocessor’s software stack consists of layered software architecture as noted below and 

depicted in Figure 1. 

 
Driver Stack: 
The Linux software for the Intel Xeon Phi coprocessor consists of a number of components: 

 
 Device Driver: At the bottom of the software stack in kernel space is the Intel Xeon Phi coprocessor device 

driver. The device driver is responsible for managing device initialization and communication between the 

host and target devices. 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

6 

 

 Libraries: The libraries live on top of the device driver in user and system space. The libraries provide basic 

card management capabilities such as enumeration of cards in a system, buffer management, and host-to-

card communication. The libraries also provide higher-level functionality such as loading and unloading 

executables onto the coprocessor, invoking functions from the executables on the card, and providing a 

two-way notification mechanism between host and card. The libraries are responsible for buffer 

management and communication over the PCIe bus. 

 Tools: Various tools that help maintain the software stack. Examples include /usr/bin/micinfo for querying 

system information, /usr/bin/micflash for updating the card’s flash, /usr/sbin/micctrl to help administrators 

configure the card, etc.  

 Card OS (uOS): The Linux-based operating system running on the Intel Xeon Phi coprocessor.  

NOTE: Source for relatively recent versions of the uOS, the device driver, and the low-level SCI library interface 

can be found at http://software.intel.com/mic-developer . 

  

http://software.intel.com/mic-developer


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

7 

 

Intel® Many Integrated Core Architecture Overview 

The Intel Xeon Phi coprocessor has up to 61 in-order Intel MIC Architecture processor cores running at 1GHz (up 

to 1.3GHz). The Intel MIC Architecture is based on the x86 ISA, extended with 64-bit addressing and new 512-

bit wide SIMD vector instructions and registers. Each core supports four hardware threads. In addition to the 

cores, there are multiple on-die memory controllers and other components. 

 

 

Figure 2: Architecture overview of an Intel® MIC Architecture core 

Each core includes a newly designed vector processing unit (VPU). Each VPU contains 32 512-bit vector 

registers. To support the new vector processing model, a new 512-bit SIMD ISA was introduced. The VPU is a 

key feature of the Intel MIC Architecture-based cores. Fully utilizing the VPU is critical for best Intel Xeon Phi 

coprocessor performance. It is important to note that Intel MIC Architecture cores do not support other SIMD 

ISAs (such as MMX™, Intel® SSE, or Intel® AVX). 

Each core has a 32KB L1 data cache, a 32KB L1 instruction cache, and a 512KB L2 cache. The L2 caches of all 

cores are interconnected with each other and the memory controllers via a bidirectional ring bus, effectively 

creating a shared last-level cache of up to 32MB. The design of each core includes a short in-order pipeline. 

There is no latency in executing scalar operations and low latency in executing vector operations. Due to the 

short in-order pipeline, the overhead for branch misprediction is low. 

For more details on the architecture, please refer to the Intel® Xeon Phi™ Coprocessor Software Developer’s 

Guide posted at http://software.intel.com/mic-developer under “TOOLS & DOWNLOADS” tab.  

  

http://software.intel.com/mic-developer


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

8 

 

Administrative Tasks 

If you purchased the Intel Xeon Phi coprocessor from an equipment manufacturer, please go to the Intel® 

Developer Zone (IDZ) page http://software.intel.com/mic-developer and click the “TOOLS & DOWNLOADS” tab, 

then select “Intel® Manycore Architecture Platform Software Stack (Intel® MPSS).” This brings you to a page 

where you can download the latest hardware drivers and release notes for the platform.  

Preparing Your System for First Use 

Steps to install the driver and start the card 

1. From the http://software.intel.com/mic-developer page, click the “TOOLS & DOWNLOADS” tab, then 

select “Intel® Manycore Platform Software Stack (Intel® MPSS).” Navigate to the latest version of the 

Intel MPSS release for Linux and download “Readme for Linux (English)” (readme.txt). Also download 

the release notes (releaseNotes-linux.txt) and the User’s Guide for Intel MPSS. 

2. You may install your system with Red Hat Enterprise Linux 6.3 64-bit kernel 2.6.32-279, Red Hat 

Enterprise Linux 6.4 64-bit kernel 2.6.32-358, Red Hat Enterprise Linux 6.5 64-bit kernel 2.6.32-431, 

Red Hat Enterprise Linux 6.6 64-bit kernel 2.6.32-504, Red Hat Enterprise Linux 7.0 64-bit kernel 

3.10.0-123, SUSE Linux Enterprise Server SLES 11 SP2 kernel 3.0.13-0.27-default, or SUSE Linux 

Enterprise Server SLES 11 SP3 kernel 3.0.76-0.11-default (Section 2.1 in readme.txt ). Be sure to install 

ssh, which is used to log in to the card’s uOS. 

WARNING: When installing Red Hat, it may automatically update a new version of the Linux kernel. If 

this happens, you will not be able to use the pre-built host driver, but will need to rebuild it manually 

for the new kernel version. Please see section 2.1 in readme.txt for instructions on building an Intel 

MPSS host driver for a specific Linux kernel. 

3. Log in as root. 

4. Download the appropriate release driver for your operating system in step 1 (<mpss-version>-linux.tar) 

where <mpss-version> is mpss-3.4 at the time this document was updated. 

5. Install the host driver RPMs as detailed in section 2.2 of readme.txt. Don’t skip the creation of 

configuration files for your coprocessor. 

6. Update the flash on your coprocessor(s) as detailed in section 2.4 of readme.txt.  

7. Reboot the system. 

8. Start the coprocessor (while you can set up the card to start with the host system, it will not do so by 

default), and then run “micinfo” to verify that it is set up properly: 

sudo service mpss start1 

sudo micctrl –w 

sudo /usr/bin/micinfo 

 Verify that the driver version, Intel MPSS version, and flash version are correct according to the 

following table:  

 

                                           
1 For RHEL 7.0, use “sudo systemctl start mpss” instead. 

http://www.intel.com/software/mic
http://www.intel.com/software/mic


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

9 

 

Table 1: Corresponding Driver Version, Intel® MPSS Version, and Flash Version found in each Intel MPSS 

release. 

 

Intel® MPSS stack installed Driver Version Intel MPSS 

Version 

Flash Version 

mpss-3.4 3.4-xx 3.4 2.1.02.0390 

mpss-3.3 3.3-xx 3.2 2.1.02.0390 

mpss-3.2 3.2-xx 3.2 2.1.03.0386 

mpss-3.1 3.1-xx 3.1 2.1.03.0386 

mpss_gold_update_3-2.1.6720-13 6720-13 2.1.6720-13 2.1.02.0386 

KNC_gold_update_2-2.1.5889-16 5889-16 2.1.5889-16 2.1.05.0385 

KNC_gold_update_1-2.1.4982-15 4982-15 2.1.4982-15 2.1.05.0375 

KNC_gold-2.1.4346-xx 4346-xx 2.1.4346-xx 2.1.01.0375 

Steps to install the Software Development tools 

 

You can purchase software development tools at http://software.intel.com/en-us/linux-tool-suites. Select the 

tool(s) that fit(s) your need (e.g., “Intel® Parallel Studio XE 2015 Cluster Edition” or the Intel® Parallel Studio XE 

Professional Edition). After selecting the tools you need and completing the purchasing process, you will receive 

a serial number. Alternatively, visit http://software.intel.com/en-us/mic-developer, under “Tools and Downloads” 

select the “Intel® Software Development Products” to find the latest list of supported tools for the Intel Xeon 

Phi coprocessor. 

 

If you acquired a serial number for Intel tools, go to the Intel® Registration Center (IRC) at 

http://registrationcenter.intel.com to register and download the products. Clicking the button “Register Product” 

will bring you to the download page of the tool(s) you purchased. The following example shows buying the Intel 

Parallel Studio XE 2015 Cluster Edition: from http://software.intel.com/en-us/intel-cluster-studio-xe/. Under the 

Documentation tab, you can get the Install Guide, Getting Started Guide, and Release Notes.  

 

1. Follow the instructions in the Install Guide to install the Intel Parallel Studio XE Cluster Edition for Linux. 

If you bought the Intel Parallel Studio XE Composer Edition for Linux, read the corresponding Install 

Guide to install these packages, as well as separately installing Intel® VTune™ Amplifier XE for Linux. 

 For first-time installations, be sure to get the product license number described above that is 

required to activate the product, and then provide the license number during installation. 

Subsequent installations can select the “Use existing license” option. 

 Read the release notes of the product (ipsxe2015-cluster-edition-release-notes.pdf if you 

bought the Intel Cluster Studio XE for Linux, or intel-parallel-studio-xe-2015-composer-

edition-release-notes.pdf if you bought the Intel Parallel Studio XE Composer Edition for Linux. 

 Untar the product file.  

http://software.intel.com/en-us/linux-tool-suites
http://software.intel.com/en-us/mic-developer
http://registrationcenter.intel.com/
http://software.intel.com/en-us/intel-cluster-studio-xe/


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

10 

 

o tar –xvzf parallel_studio_xe_2015.<update>.<package_num>.tgz, or  

o tar –xvf l_composer_2015.<update>.<package_num>.tgz, or  

 

2. Install the software tools using the previously acquired serial number.  

3. Verify that the card is working by running a sample program (located in 

/opt/intel/composer_xe_2015.*.*/Samples/en_US/C++/mic_sample for C/C++ code 

or in /opt/intel/composer_xe_2015.*.*/Samples/en_US/Fortran/mic_sample for 

Fortran code) with “setenv H_TRACE 2” or “export H_TRACE=2” to display the dialog between 

the host and the coprocessor (messages from the processor will be prefixed with “MIC:”). If you do see 

a dialog, then everything is running fine and the system is ready for general use. 

4. If you intend to collect performance data on this system using Intel VTune Amplifier XE 2015: 

a) After Intel MPSS gets started, it loads the data collection driver automatically. But for some reason, 

if it fails to load the data collection driver, you can manually load the driver by going to 

/opt/intel/vtune_amplifier_xe/bin64/k1om/ and running: 

sudo sep_micboot_install.sh  

 

b) Start (or restart) the Intel MPSS service (this also starts the sampling driver once the files are 

copied in the previous step):  

sudo service mpss restart  

sudo micctrl -r 

sudo micctrl -w 

 

The coprocessor has successfully restarted when micctrl –w reports “micx: online”. 

c) The sampling driver will now start every time the coprocessor is restarted. 

d) If you ever need to reinstall the sampling driver, do the following: 

sudo service mpss stop 

sudo sep_micboot_uninstall.sh 

sudo service mpss restart 

sudo micctrl –w 

 

Updating an Existing System 

 

Updating a system that already has an Intel® Xeon Phi™ Coprocessor  

 

1. From the http://software.intel.com/mic-developer page, click the “TOOLS & DOWNLOADS” tab, then 

select “Software Drivers: Intel® Manycore Platform Software Stack (Intel® MPSS)”. Download 

“Readme file for the Intel® MPSS release” (readmetxt). Also download the release notes 

(releaseNotes-linux.txt). 

http://www.intel.com/software/mic


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

11 

 

2. Uninstall the previous version of the Intel MPSS and install the new one using the instructions in 

sections 2.3 and 2.2 of readme.txt . 

3. Update the flash on your card(s) as detailed in section 2.4 of readme.txt. 

4. Reboot the system. 

5. Start the Intel Xeon Phi coprocessor (while you can set up the card to start with the host system, 

it will not do so by default), and then run “micinfo” to verify that it is set up properly: 

sudo service mpss start 

sudo micctrl -w  

/usr/bin/micinfo 

 Verify that the driver version, Intel MPSS version, and flash version are correct according to table 

1 in the previous section.  

 

Regaining Access to the Intel® Xeon Phi™ Coprocessor after Reboot 

The coprocessor will not start when the host system reboots. You will need to manually start it, and then run 

“micinfo” to verify that it started properly. You may need to add /usr/sbin and /sbin to your path to do 

this successfully as a non-root user via sudo: 

sudo service mpss start 

sudo micctrl -w  

/usr/bin/micinfo 

 

Note: It is possible to make the coprocessor uOS automatically start on reboot and preload desired files. See 

section 20.12 of the Intel MPSS User’s Guide for details 

 

Restarting the Intel® Xeon Phi™ Coprocessor If It Hangs 

If a process running on the coprocessor hangs, but it is otherwise responsive via ssh, log onto the coprocessor 

and kill the process like any other Linux process. 

 

When a coprocessor hangs and is inaccessible or unresponsive via ssh, there are two ways to restart it. But 

first, see if you can tell what is happening: 

 

sudo micctrl –-status <micx> 

 

Assuming that the Intel MPSS service is still functioning properly, you can try to restart the coprocessor without 

affecting any other attached coprocessors as follows: 

 

sudo micctrl –-reset <micx> 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

12 

 

sudo micctrl –-boot <micx> 

sudo micctrl -w  

/usr/bin/micinfo 

 

If the Intel MPSS service is not running properly, then you need to restart the driver and all connected 

coprocessors: 

 

sudo service mpss stop 

sudo service mpss unload 

sudo service mpss start 

sudo micctrl -w  

/usr/bin/micinfo 

 

Monitoring the Intel® Xeon Phi™ Coprocessor 

If you want to monitor the load on your coprocessor, its temperature, etc., run the System Management and 

Configuration (SMC) utility. See section 8.3 of the Intel MPSS User’s Guide for details: 

 

Execute the monitor 

/usr/bin/micsmc & 

 

When started with no arguments, micsmc will run in GUI-mode. When invoked with arguments, it will run in 

character-mode. 

 

Running an Intel® Xeon Phi™ Coprocessor program from the host system 

It is possible to copy an Intel MIC Architecture native binary to a specified coprocessor and execute it using the 

“micnativeloadex” utility. This utility conveniently copies library dependencies to the coprocessor. See 

section 8.5 of the Intel MPSS User’s Guide for details. 

 

Working directly with the uOS Environment Intel® Xeon Phi™ Coprocessor 

Since the coprocessor is running Linux and is effectively a separate network node, root, or non-root users can 

log into it via “ssh” and issue many common Linux commands. Files are transferred to/from the coprocessor 

using “scp” or other means. 

 

The default IP address for the coprocessor as seen from the host is 172.31.<coprocessor>.1, while the 

coprocessor sees the host at 172.31.<coprocessor>.254 by default. The coprocessor can also be referred 

to from the host by the alias mic<coprocessor>. For example, the first coprocessor you install in your 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

13 

 

system is called “mic0” and is located at 172.31.1.1. It sees the host as 172.31.1.254. If a second 

coprocessor were installed, it would be called “mic1” and located at 172.31.2.1, and it would see the host 

as 172.31.2.254. 

 

For detailed information on setting up the card for non-root users, adjusting the network configuration, 

mounting an NFS file system exported by the host for use on the coprocessor, etc., please see the Intel MPSS 

User’s Guide. 

 

Useful Administrative Tools 

This product ships with the following administrative tools, found in the “/usr/bin” directory. Be sure root 

and users needing to use these tools have this directory added to their default path: 

 micinfo - provides information about host and coprocessor system configuration. 

 micflash - updates the flash on the coprocessor; saves and retrieves the version and other information 

for each section of the flash. 

 micsmc - eases the burden of monitoring and managing Intel Xeon Phi coprocessors. 

 miccheck –verifies a coprocessor’s configuration by running various diagnostic tests. 

 micnativeloadex – copies an Intel® MIC Architecture native binary to a specified coprocessor and 

executes it. 

 micctrl – helps the system administrator configure and restart the coprocessor. 

 micrasd – runs on the host and handles and logs hardware errors. 

 mpssflash – the POSIX version of micflash. 

 mpssinfo – the POSIX version of micinfo. 

 

Please see section 8 in the Intel MPSS User’s Guide for details on these tools and their arguments. 

Getting Started/Developing Intel® Xeon Phi™ Software 

You develop applications for the Intel MIC Architecture using your existing knowledge of multi-core and SIMD 

programming. The offload language extensions allow you to port sections of your code (written in C/C++ or 

Fortran) to run on the coprocessor, or you can port your entire application to the Intel MIC Architecture. Best 

performance will only be attained with highly parallel applications that also use SIMD operations (generated by 

the compiler or using compiler intrinsics) for most of their execution. 

Available Software Development Tools / Environments 

You can start programming the Intel Xeon Phi coprocessor using your existing parallel programming knowledge 

and the same techniques you use to develop parallel applications on the host. New tools were not created to 

support development directly on the coprocessor; rather, the familiar host-based Intel tools have been extended 

to add support for the Intel MIC Architecture via a few additions to standard languages and APIs. However, to 

make best use of the development tools and to get the best performance from the coprocessor, it is important 

to understand the Intel MIC Architecture.  

Development Environment: Available Compilers and Libraries 

 Compilers 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

14 

 

o Intel C++ Composer XE 2015 for building applications that run on Intel® 64 architecture and 

Intel MIC Architecture 

o Intel Fortran Composer XE 2015 for building applications that run on Intel 64 architecture and 

Intel MIC Architecture 

 Libraries packaged with the compilers include: 

o Intel MKL optimized for the Intel MIC Architecture 

o Intel® Threading Building Blocks (Intel® TBB) 

o Intel® Integrated Performance Primitive (Intel® IPP) 

 Libraries packaged separately include: 

o Intel® MPI Library for Linux OS including Intel MIC Architecture 

o Intel® Trace Collector and Analyzer 

o Intel® SDK for OpenCL™ Applications 2014 available at: http://software.intel.com/en-

us/vcsource/tools/opencl-sdk-xe  

Development Environment: Available Tools 

In addition to the standard compilers and Intel libraries, the following tools are available to help you debug and 

optimize software running on the coprocessor. 

 Debugger 

o Intel® Debugger for applications running on the Intel 64 architecture and Intel MIC Architecture 

o Intel® C++ Eclipse* Product Extension including Debugging 

 Profiling  

o Intel VTune Amplifier XE 2015 for Linux, which is used on the host Linux OS to collect and 

view performance data collected on the coprocessor. 

o Intel® Inspector 2015, which is used to detect memory and threading errors for serial and 

parallel applications. 

o Intel® Advisor 2015, which is used to assist developers to design threads. 

General Development Information 

Development Environment Setup 

• To set up your development environment for use with the Intel tools, you need to source the 

following script (the default install locations are assumed): 

o Intel C++ and Fortran Composer XE 2015: 

/opt/intel/composerxe/bin/compilervars.csh or compilervars.sh script 

with intel64 as the argument, e.g. 

source /opt/intel/composer_xe_2015/bin/compilervars.sh intel64 

The following scripts are run as a result of calling the compilervars script. To get your 

environment properly initialized, it is advisable not to run them individually (among other things, 

there are ordering issues that might result in unpredictable behavior). 

o Intel TBB: /opt/intel/composer_xe_2015/tbb/bin/tbbvars.csh or 

tbbvars.sh with intel64 as the argument. 

o Intel MKL: /opt/intel/composer_xe_2015/mkl/bin/mklvars.csh or 

mklvars.sh with intel64 as the argument. 

http://software.intel.com/en-us/vcsource/tools/opencl-sdk-xe
http://software.intel.com/en-us/vcsource/tools/opencl-sdk-xe


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

15 

 

Documentation and Sample Code 

• The most useful documentation can be found in 

/opt/intel/composer_xe_2015/Documentation/en_US/ including: 

o compiler_c/index.htm and compiler_f /index.htm - complete documentation 

for Intel C++ Compiler XE 2015 and the Intel Fortran Compiler XE 2015. 

 Most information on how to build for the Intel MIC Architecture can be found in the “Key 

Features/Intel® MIC Architecture” section under “Programming for the Intel® MIC 

Architecture”. 

 Information on Intel MIC Architecture intrinsics can be found in the “Compiler 

Reference/Intrinsics” section under “Intrinsics for Intel® MIC Architecture”.  

o Release_Notes_*_2015_L_EN.pdf - please read these carefully for known issues and 

their workarounds, plus installation instructions, for all the tools with Intel MIC Architecture 

support.  

 Note: For various reasons, this document can miss some last-minute updates. The most 

recent Release_NOTES_*_2015_L_EN.pdf documents can be downloaded from the Intel 

Registration Center (see the “Steps to install the Software Development tools” section). 

o debugger/debugger_documentation.htm – Information on how to use the Debugger. 

You will find information specific to debugging Intel MIC Architecture applications under 

the ”Starting GDB for Intel® Phi™ Coprocessor Applications” section of the document 

gdb_quickstart_lin.pdf . 

• Other documentation that includes sections on using the coprocessor: 

o The Intel MKL User’s Guide, which can be accessed via mkl_documentation.htm found in 

/opt/intel/composer_xe_2015/Documentation/en_US/mkl/mkl_userguide

/index.htm, contains a section called “Using the Intel® Math Kernel Library on Intel® MIC 

Core Architecture Coprocessors” which describes both “Automatic Offload” and “Compiler 

Assisted Offload” for Intel MKL functions. 

o Information on collecting performance data on the coprocessor using the VTune Amplifier XE 

2015 for Linux can be found in 

/opt/intel/vtune_amplifier_xe_2015/documentation/en/tutorials/fin

d_lw_hotspots/C++/index.htm 

• Useful documentation on the Web:  

o On the http://software.intel.com/mic-developer  website you will find a wide range of 

documentation that can be downloaded, most notably the Intel® Xeon Phi™ Coprocessor 

Software Developers Guide under “TOOLS & DOWNLOAD” tab, as well as including the Intel® 

Xeon Phi™ Performance Monitor Units (under “PROGRAMMING” tab), and the Intel® Xeon Phi™ 

Coprocessor Instruction Set Reference Manual (under the “OVERVIEW” tab) . From this site 

you will also be able to find a community forum to ask questions, links to other available 

tools, code samples, and case studies. 

o http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-

integrated-core-architecture contains a wealth of information on compilers.  

• Some sample offload code using the explicit memory copy model can be found in: 

o C++: 

/opt/intel/composer_xe_2015/Samples/en_US/C++/mic_samples/intro_sa

mpleC/ 

http://software.intel.com/mic-developer
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

16 

 

o Fortran: 

/opt/intel/composer_xe_2015/Samples/en_US/Fortran/mic_samples/ 

o Intel MKL: /opt/intel/composer_xe_2015/mkl/examples/mic* 

o For examples of Intel MKL automated offload: 

/opt/intel/composer_xe_2015/mkl/examples/mic_ao/blasc 

and …/mic_ao/blasf 

o The rest of the samples demonstrate use of Intel MKL via compiler-assisted offload 

(/opt/intel/composer_xe_2015/mkl/examples/mic_offload). 

• Some sample offload code using the implicit memory copy model can be found in: 

o C: 
/opt/intel/composer_xe_2015/Samples/en_US/C++/mic_samples/shrd_sa

mpleC and …/LEO_tutorial 

o C++: 
/opt/intel/composer_xe_2015/Samples/en_US/C++/mic_samples/shrd_sa

mpleCPP 

Build-Related Information 

• The offload compiler produces “fat” binaries and .so files that contain code for both the host and 

coprocessor. 

• The offload compiler produces code that examines the run-time execution environment for the 

presence of a coprocessor. The offload compiler will create both host and Intel MIC Architecture 

versions of all code marked for offload. 

• A number of workarounds and hints can be found in releaseNotes-linux.txt. 

 

Compiler Switches and Makefiles 

When building applications that offload some of their code to the coprocessor, it is possible to cause the 

offloaded code to be built with different compiler options from the host code. The method of passing these 

options to the compiler is documented in the compiler documentation under the “Compiler Reference/Compiler 

Options/Compiler Option Categories and Descriptions” section. Look for the –offload-option compiler 

switch. In that same section, also look up the –offload-attribute-target compiler switch, which 

provides an alternative to editing your source files in some situations (applies to the pragma-based offload 

methods). Finally, -no-offload provides a way to make the compiler ignore the _Cilk_offload and 

#pragma_offload constructs (which cause it by default to build a heterogeneous binary). 

Debugging During Runtime 

To debug offload activity, the following environment variables are available: 

 To learn whether offload portions of the program are running on the host or coprocessor 

For csh – setenv H_TRACE 1 

For sh – export H_TRACE=1 

 For more complete debug information 

For csh – setenv H_TRACE 2 

For sh – export H_TRACE=2 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

17 

 

 To print the compiler’s internal offload timers, a value of 1 reports just the time the offload 

took measured by the host and the amount of computation time done by the coprocessor. A 

value of 2 adds information on how much data was transferred in either direction.  

For csh – setenv OFFLOAD_REPORT <1 or 2>  

For sh – export OFFLOAD_REPORT=<1 or 2> 

 

Details can be found in the compiler documentation in the “Compilation/Setting Environment Variables” 

section. 

 

Where to Get More Help 

If you have any questions, you can post them on the Forum at: http://software.intel.com/en-

us/forums/intel-many-integrated-core. 

 

Using the Offload Compiler – Explicit Memory Copy Model 

In this section, a reduction is used as an example to show a step-by-step approach for developing applications 

for the Intel Xeon Phi coprocessor using the offload compiler. The offload compiler is a heterogeneous2 compiler, 

with both host CPU and target compilation environments. Code for both the host CPU and coprocessor is 

compiled within the host environment, and offloaded code is automatically run within the target environment. 

The offload behavior is controlled by compiler directives: pragmas in C/C++ and directives in Fortran. 

 

Some common libraries, such as the Intel MKL, are available in host versions as well as target versions. When an 

application executes its first offload and the target is available, the runtime loads the target executable onto 

the coprocessor. It also initializes the libraries linked with the target code. The loaded target executable remains 

in the target memory until the host program terminates. Thus, any global state maintained by the library is 

maintained across offload instances. 

 

Note: Although you can specify the region of code to run on the target, there is no guarantee of execution on 

the coprocessor. Depending on the presence of the target hardware or the availability of resources on the 

coprocessor when execution reaches the region of code marked for offload, the code may or may not run on 

the coprocessor.  

The following code samples show several versions of porting reduction code to the coprocessor using the 

offload pragma directive.  

Reduction 

The operation refers to computing the expression: 

ans = a[0] + a[1] + … + a[n-1] 

 

                                           
2 http://dictionary.reference.com/browse/heterogeneous 

http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://dictionary.reference.com/browse/heterogeneous


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

18 

 

Host Version: 

The following sample code shows the C code to implement this version of the reduction. 

 

float reduction(float *data, int size) 

{ 

    float ret = 0.f; 

    for (int i=0; i<size; ++i) 

    { 

        ret += data[i]; 

    } 

    return ret; 

} 

Code Example 1: Implementing Reduction Code in C/C++ 

 

Creating the Offload Version 

Serial Reduction with Offload 

You can use #pragma offload target(mic) (as shown in the example below) to mark statements (offload 

constructs) that should execute on the coprocessor. The offloaded region is defined as the offload construct 

plus the additional regions of code that run on the target as the result of function calls. Execution of the 

statements on the host will resume once the statements on the target have executed and the results are 

available on the host (i.e., the offload will block, although there is a version of this pragma that allows 

asynchronous execution). The in, out, and inout clauses specify the direction of data to be transferred between 

the host and the target. 

 

Variables used within an offloaded construct that are declared outside the scope of the construct (including the 

file-scope) are copied (by default) to the target before execution on the target begins and copied back to the 

host on completion. 

 

For example, in the code below, the variable ret is automatically copied to the target before execution on the 

target and copied back to the host on completion. The offloaded code below is executed by a single thread on 

a single Intel MIC Architecture core. 

 
float reduction(float *data, int size) 

{ 

    float ret = 0.f; 

    #pragma offload target(mic) in(data:length(size)) 

    for (int i=0; i<size; ++i) 

    { 

        ret += data[i]; 

    } 

    return ret; 

} 

Code Example 2: Serial Reduction with Offload 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

19 

 

Vector Reduction with Offload  

Each core on the Intel Xeon Phi coprocessor has a VPU. The auto vectorization option is enabled by default on 

the offload compiler. Alternately, as seen in the example below, you can use the Intel® Cilk™ Plus Extended Array 

Notation to maximize vectorization and take advantage of the Intel MIC Architecture core’s 32 512-bit registers. 

The offloaded code is executed by a single thread on a single core. The thread uses the built-in reduction 

function __sec_reduce_add() to use the core’s 32 512-bit vector registers to reduce the elements in the array 

sixteen at a time. 

 

float reduction(float *data, int size) 

{ 

    float ret = 0; 

    #pragma offload target(mic) in(data:length(size)) 

    ret = __sec_reduce_add(data[0:size]); //Intel® Cilk™ Plus  

                                          //Extended Array Notation 

    return ret; 

} 

Code Example 3: Vector Reduction with Offload in C/C++ 

Asynchronous Offload and Data Transfer  

Asynchronous offload and data transfer between the host and the coprocessor is available. For details see the 

“About Asynchronous Computation” and “About Asynchronous Data Transfer” sections in the Intel® C++ Compiler 

User and Reference Guide (under “Key Features/Programming for the Intel® MIC Architecture”). 

 

For an example showing the use of asynchronous offload and transfer, refer to 

/opt/intel/composer_xe_2015 

/Samples/en_US/C++/mic_samples/intro_sampleC/sampleC13.c 

 

Note that when using the Explicit Memory Copy Model in C/C++, arrays are supported, provided the array 

element type is scalar or a bitwise copyable struct or class. So arrays of pointers are not supported. For C/C++ 

complex data structure, use the Implicit Memory Copy Model. Please consult the section “Restrictions on 

Offload Code Using a Pragma” in the “Intel C++ Compiler User and Reference Guide” for more information.  

Using the Offload Compiler – Implicit Memory Copy Model 
Intel Composer XE 2015 includes two additional keyword extensions for C and C++ (but not Fortran) that 

provide a “shared memory” offload programming model appropriate for dealing with complex, pointer-based 

data structures such as linked lists, binary trees, and the like (_Cilk_shared and _Cilk_offload). This 

model places variables to be shared between the host and coprocessor (marked with the _Cilk_shared 

keyword) at the same virtual addresses on both machines and synchronizes their values at the beginning and 

end of offload function calls marked with the _Cilk_offload keyword. Data to be synchronized can also be 

dynamically allocated using special allocation and free calls that ensure the allocated memory exists at the same 

virtual addresses on both machines. 

 

APIs for dynamic shared memory allocation: 
void *_Offload_shared_malloc(size_t size); 

_Offload_shared_free(void *p); 

 

APIs for dynamic aligned shared memory allocation: 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

20 

 

void *_Offload_shared_aligned_malloc(size_t size, size_t alignment); 

_Offload_shared_aligned_free(void *p); 

  

Note that this is not actually “shared memory”: there is no hardware that maps some portion of the 

coprocessor’s memory to the host system. The memory subsystems on the coprocessor and host are completely 

independent, and this programming model is just a different way of copying data between these memory 

subsystems at well-defined synchronization points. The copying is implicit, in that these synchronization points 

(offload calls marked with _Cilk_offload) do not specify what data to copy. Rather, the runtime determines 

what data has changed between the host and coprocessor and copies only the deltas at the beginning and end 

of the offload function call. 

 

The following code sample demonstrates the use of the _Cilk_shared and _Cilk_offload keywords and 

the dynamic allocation of “shared” memory. 

 
float * _Cilk_shared data; //pointer to “shared” memory 

 

_Cilk_shared float MIC_OMPReduction(int size) 

{ 

    #ifdef __MIC__ 

    float Result;  

    int nThreads = 32; 

    omp_set_num_threads(nThreads); 

 

    #pragma omp parallel for reduction(+:Result) 

    for (int i=0; i<size; ++i) 

    { 

        Result += data[i]; 

    } 

    return Result; 

 

 

    #else 

    printf("Intel(R) Xeon Phi(TM) Coprocessor not available\n"); 

    #endif 

    return 0.0f; 

} 

 

int main() 

{ 

    size_t size = 1*1e6; 

    int n_bytes = size*sizeof(float); 

    data = (_Cilk_shared float *)_Offload_shared_malloc (n_bytes); 

    for (int i=0; i<size; ++i) 

    { 

        data[i] = i%10; 

    } 

 

    _Cilk_offload MIC_OMPReduction(size); 

 

    _Offload_shared_free(data); 

    return 0; 

} 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

21 

 

Code Example 4: Using the “_Cilk_shared” and “_Cilk_offload” Keywords with Dynamic Allocation in 

C/C++ 

 

Note: For more examples on using the implicit memory copy model, see: 

C: /opt/intel/composer_xe_2015/Samples/en_US/C++/mic_samples/shrd_sampleC 

and …/LEO_tutorial 

C++: 
/opt/intel/composer_xe_2015/Samples/en_US/C++/mic_samples/shrd_sampleCP

P 

 

For more information, read the Intel C++ Compiler User and Reference Guides and/or the Intel Fortran Compiler 

User and Reference Guides.  

 

The “Restrictions on Offload Using Shared Virtual Memory” section in the “Intel C++ Compiler User and 

Reference Guide” explains the restrictions of using this programming model. 

 

Native Compilation 

Applications can also be run natively on the coprocessor, in which case the coprocessor will be treated as a 

standalone multicore computer. Once the binary is built on the host system, copy the binary and other related 

binaries or data to the coprocessor’s filesystem (or make them visible there via NFS).  

Example: 

1. Copy openmp_sample.c from 

/opt/intel/composer_xe_2015/Samples/en_US/C++/openmp_samples/ to your home 

directory  

2. Build the application with the –mmic flag:  

icc –mmic –vec-report3 –openmp openmp_sample.c 

 

3. Upload the binary to the coprocessor: 

scp a.out mic0:/tmp/a.out 

 

4. Copy over any shared libraries required by your application, in this case the OpenMP* run-time library: 

scp /opt/intel/composer_xe_2015/lib/mic/libiomp5.so mic0:/tmp/libiomp5.so 

  

5. Connect to the coprocessor with ssh and export the local directory so that the application can find any 

shared libraries it uses (in this case the OpenMP run-time library): 

ssh mic0 

export LD_LIBRARY_PATH=/tmp  

6. This application may generate a segmentation fault if the stack size is not set correctly. To modify the 

stack size use:  



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

22 

 

 
ulimit –s unlimited 

 

7. Go to /tmp and run a.out: 

cd /tmp  

./a.out 

 

Parallel Programming Options on the Intel® Xeon Phi™ Coprocessor 

Most of the parallel programming options available on host systems are also available on the coprocessor. These 

include the following: 

1. Intel Threading Building Blocks (Intel TBB) 

2. OpenMP 

3. Intel Cilk Plus 

4. pthreads 

The following sections discuss the use of these parallel programming models in code using the offload 

extensions. Code that runs natively on the coprocessor can use these parallel programming models just as they 

would on the host, with no unusual complications beyond the larger number of threads. 

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* 

There is no correspondence between OpenMP threads on the host CPU and on the coprocessor. Because an 

OpenMP parallel region within an offload/pragma is offloaded as a unit, the offload compiler creates a team of 

threads based on the available resources on the coprocessor. Since the entire OpenMP construct is executed on 

the coprocessor, within the construct the usual OpenMP semantics of shared and private data apply. 

 

Multiple host CPU threads can offload to the coprocessor at any time. If a CPU thread attempts to offload to the 

coprocessor and it doesn’t have any resources available, the code meant to be offloaded may be executed on 

the host. When a thread on the coprocessor reaches the “omp parallel” directive, it creates a team of threads 

based on the resources available on the coprocessor. The theoretical maximum number of hardware threads 

that can be created is 4 times the number of cores in your coprocessor. The practical limit is four less than this 

(for offloaded code) because the first core is reserved for the uOS and its services. 

 

The code shown below is an example of a single host CPU thread attempting to offload the reduction code to 

the coprocessor using OpenMP in the offload construct. 

 
float OMP_reduction(float *data, int size) 

{ 

    float ret = 0; 

    #pragma offload target(mic) in(size) in(data:length(size)) 

    { 

        #pragma omp parallel for reduction(+:ret) 

        for (int i=0; i<size; ++i) 

        { 

            ret += data[i]; 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

23 

 

        } 

    } 

    return ret; 

} 

Code Example 5: C/C++:  Using OpenMP* in Offloaded Reduction Code 

 

 
real function FTNReductionOMP(data, size) 

    implicit none 

    integer :: size 

    real, dimension(size) :: data 

    real :: ret = 0.0 

 

!dir$ omp offload target(mic) in(size) in(data:length(size)) 

!$omp parallel do reduction(+:ret) 

    do i=1,size 

        ret = ret + data(i) 

    enddo 

!$omp end parallel do 

 

    FTNReductionOMP = ret 

    return 

end function FTNReductionOMP 

Code Example 6: Fortran:  Using OpenMP* in Offloaded Reduction Code 

 

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: OpenMP* + Intel® Cilk™ Plus 

Extended Array Notation 

The following code sample further extends the OpenMP example to use Intel Cilk Plus Extended Array Notation. 

In the following code sample, each thread uses the Intel Cilk Plus Extended Array Notation __sec_reduce_add(), 

a built-in reduction function to use all 32 of the Intel MIC Architecture’s 512-bit vector registers to reduce the 

elements in the array. 

 
float OMPnthreads_CilkPlusEAN_reduction(float *data, int size) 

{ 

    float ret=0; 

    #pragma offload target(mic) in(data:length(size)) 

    { 

        int nthreads = omp_get_max_threads(); 

        int ElementsPerThread = size/nthreads; 

        #pragma omp parallel for reduction(+:ret) 

        for(int i=0;i<nthreads;i++) 

        { 

            ret =_sec_reduce_add( 

                   data[i*ElementsPerThread:ElementsPerThread]); 

        } 

        //rest of the array 

        for(int i=nthreads*ElementsPerThread; i<size; i++) 

        { 

            ret+=data[i]; 

        } 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

24 

 

    } 

    return ret; 

} 

Code Example 7: Array Reduction Using OpenMP* and Intel® Cilk™ Plus in C/C++ 

Parallel Programming on the Intel® Xeon Phi™ Coprocessor: Intel® Cilk™ Plus 

Intel Cilk Plus header files are not available on the target environment by default. To make the header files 

available to an application built for the Intel MIC Architecture using Intel Cilk Plus, wrap the header files with 

#pragma offload_attribute(push,target(mic)) and #pragma offload_attribute(pop) as follows: 

 
#pragma offload_attribute(push,target(mic)) 

#include <cilk/cilk.h> 

#include <cilk/reducer_opadd.h> 

#pragma offload_attribute(pop) 

Code Example 8: Wrapping the Header Files in C/C++ 

 

In the following example, the compiler converts the cilk_for loop into a recursively called function using an 

efficient divide-and-conquer strategy. 

 
float ReduceCilk(float*data, int size) 

{ 

    float ret = 0; 

    #pragma offload target(mic) in(data:length(size)) 

    { 

        cilk::reducer_opadd<int> total; 

        cilk_for (int i=0; i<size; ++i) 

        { 

            total += data[i]; 

        } 

        ret = total.get_value(); 

    } 

    return ret; 

} 

Code Example 9: Creating a Recursively Called Function by Converting the “cilk_for” Loop 

Parallel Programming on Intel® Xeon Phi™ Coprocessor: Intel® Threading Building Blocks 

(Intel® TBB) 

Like Intel Cilk Plus, the Intel TBB header files are not available on the target environment by default. They are 

made available to the Intel MIC Architecture target environment using similar techniques: 

 
#pragma offload_attribute (push,target(mic)) 

#include "tbb/task_scheduler_init.h" 

#include "tbb/blocked_range.h" 

#include "tbb/parallel_reduce.h" 

#include "tbb/task.h" 

#pragma offload_attribute (pop) 

 

using namespace tbb; 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

25 

 

Code Example 10: Wrapping the Intel® TBB Header Files in C/C++ 

 

Functions called from within the offloaded construct and global data required on the coprocessor should be 

appended by the special function attribute __attribute__((target(mic))). 

 

As an example, parallel_reduce recursively splits an array into subranges for each thread to work on. The 

parallel_reduce uses a splitting constructor to make one or more copies for each thread. For each split, the join 

method is invoked to accumulate the results.  

 

1. Prefix the class by the macro __MIC__ and the class name by __attribute__((target(mic))) if 

you want them to be generated for the coprocessor. 

 
#ifdef __MIC__ 

class __attribute__((target(mic))) ReduceTBB 

{ 

private: 

    float *my_data; 

public: 

    float sum; 

 

    void operator()( const blocked_range<size_t>& r ) 

    { 

        float *data = my_data; 

        for( size_t i=r.begin(); i!=r.end(); ++i) 

        { 

            sum += data[i]; 

        } 

    } 

 

   ReduceTBB( ReduceTBB& x, split) : my_data(x.my_data), sum(0) {} 

 

   void join( const ReduceTBB& y) { sum += y.sum; } 

 

   ReduceTBB( float data[] ) : my_data(data), sum(0) {} 

}; 

#endif 

Code Example 11: Prefixing an Intel® TBB Class for  Intel® MIC Architecture code generation in C/C++ 

 

2. Prefix the function to be offloaded to the coprocessor with __attribute__((target(mic))). 

 
__attribute__((target(mic))) 

float MICReductionTBB(float *data, int size) 

{ 

    ReduceTBB redc(data); 

    // initializing the library 

    task_scheduler_init init; 

    parallel_reduce(blocked_range<size_t>(0, size), redc); 

    return redc.sum; 

} 

Code Example 12: Prefixing an Intel® TBB Function for Intel® MIC Architecture code generation in C/C++ 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

26 

 

 

3. Use #pragma offload target(mic) to offload the parallel code using Intel TBB to the coprocessor. 

 
float MICReductionTBB(float *data, int size) 

{ 

    float ret(0.f); 

    #pragma offload target(mic) in(size) in(data:length(size)) out(ret) 

    ret = _MICReductionTBB(data, size);  

    return ret; 

} 

Code Example 13: Offloading Intel® TBB Code to the coprocessor in C/C++ 

 

NOTE: Codes using Intel TBB with an offload should be compiled with –tbb flag instead of –ltbb.  

 

Using Intel® MKL 

For offload users, Intel MKL is most commonly used in native acceleration (NAcc) mode on the coprocessor. In 

NAcc, all data and binaries reside on the coprocessor. You transfer data through offload compiler pragmas and 

semantics to be used by Intel MKL calls within an offloaded region or function. NAcc functionality contains BLAS, 

LAPACK, FFT, VML, VSL, Sparse Matrix Vector, and required Intel MKL service functions. Please see the Intel 

MKL release documents for details on which functions are optimized and which are not supported.  

The NAcc mode can also be used in native Intel MIC Architecture code. In this case the Intel MKL-shared libraries 

must be copied to the coprocessor before execution. 

 

 

Figure 3.1: Using Intel® MKL Native Acceleration with Offload 

SGEMM Sample 

Below are the steps for using SGEMM routine from the BLAS library. 

 

Sample Code – sgemm  

 

Step 1: Initialize the matrices, which in this example need to be global variables to make use of data 

persistence. 

 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

27 

 

Step 2: Send the data over to the coprocessor using #pragma offload. In this example, the 

free_if(0) qualifier is used to make the data persistent on the coprocessor. 

 

#define PHI_DEV 0 

#pragma offload target(mic:PHI_DEV) \ 
    in(A:length(matrix_elements) free_if(0)) \ 
    in(B:length(matrix_elements) free_if(0)) \ 
    in(C:length(matrix_elements) free_if(0)) 
    { 
    } 

Code Example 14: Sending the Data to the Intel® Xeon Phi™ Coprocessor 

 

Step 3: Call sgemm inside the offload section to use the “Native Acceleration” version of Intel MKL on the 

coprocessor. The nocopy() qualifier causes the data copied to the card in step 2 to be reused. 

 
#pragma offload target(mic:PHI_DEV) \ 

    in(transa, transb, N, alpha, beta) \ 

    nocopy(A: alloc_if(0) free_if(0)) nocopy(B: alloc_if(0) free_if(0)) \ 

    out(C:length(matrix_elements) alloc_if(0) free_if(0)) // output data  

    { 

        sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, 

            &beta, C, &N); 

    } 

Code Example 15: Calling sgemm Inside the Offload Section 

 

Step 4: Free the memory you copied to the card in step 2. The alloc_if(0) qualifier is used to reuse 

the data on the card on entering the offload section, and the free_if(1) qualifier is used to free the 

data on the card on exit. 

 
#pragma offload target(mic:PHI_DEV) \ 

        in(A:length(matrix_elements) alloc_if(0) free_if(1)) \ 

        in(B:length(matrix_elements) alloc_if(0) free_if(1)) \ 

        in(C:length(matrix_elements) alloc_if(0) free_if(1)) 

        { 

        } 

Code Example 16: Set the Copied Memory Free 

 

As with Intel MKL on any platform, it is possible to limit the number of threads it uses by setting the number 

of allowed OpenMP threads before executing any functions within the offloaded code. 

 

#pragma offload target(mic:PHIDEV) \ 

    in(transa, transb, N, alpha, beta) \ 

    nocopy(A: alloc_if(0) free_if(0)) nocopy(B: alloc_if(0) free_if(0)) 

    out(C:length(matrix_elements) alloc_if(0) free_if(0)) // output data 

    { 

        omp_set_num_threads(64); // set num threads in openmp 

        sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, 



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

28 

 

            &beta, C, &N);  

    } 

Code Example 17: Controlling Threads on the Intel® Xeon Phi™ Coprocessor Using 

omp_set_num_threads() 

 

Intel® MKL Automatic Offload Model  

A few of the host Intel® MKL functions are automatic offload-aware—you call them as you normally would on 

the host. However, if you have preceded the library call with a call to mkl_mic_enable(), Intel MKL will 

automatically decide at runtime whether some or all of the work required to complete the call should be divided 

between the host and the coprocessor. It bases this decision on problem size, the load on both processors, and 

other metrics. Turn this functionality off with mkl_mic_disable(). 

 

Automatic offload applies only to select host Intel MKL library calls made outside of code run on the coprocessor 

via _Cilk_offload or #pragma offload. As a result, you should be careful to minimize transferring the 

same data both in automatic offload calls and in code run on the coprocessor by _Cilk_offload or #pragma 

offload. At present, there is no way to keep common data on the coprocessor between automatic Intel MKL 

offloads and explicit programmer-controlled offloads (via _Cilk_offload or #pragma offload). 

 

An example that demonstrates how to control automatic offload can be found at 

/opt/intel/composer_xe_2015/mkl/examples/mic_ao/blasc for C code, and at 

/opt/intel/composer_xe_2015/mkl/examples/mic_ao/blasf for Fortran code. 

Debugging on the Intel® Xeon Phi™ Coprocessor 

You will find information specific to debugging Intel MIC Architecture applications in the document “Debugging 

Intel® Xeon Phi™ Application on Linux*” on this http://software.intel.com/mic-developer page, under the 

“PROGRAMMING” tab.  

Performance Analysis on the Intel® Xeon Phi™ Coprocessor  

Information on collecting performance data on the coprocessor using VTune Amplifier XE for Linux can be 

found in Getting Started -> Intel Xeon Phi Coprocessor Analysis Workflow section, located in 

/opt/intel/vtune_amplifier_xe_2015documentation/en/help/index.htm 

  

http://www.intel.com/software/mic


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

29 

 

About the Authors 

 

Sudha Udanapalli Thiagarajan received a Bachelor’s degree in Computer Science and 

Engineering from Anna University Chennai, India in 2008 and a Master’s degree in 

Computer Engineering from Clemson University in May 2010. She joined Intel in 2010 

and has been working as an enabling Application Engineer, focusing on optimizing 

applications for ISVs and developing collateral for Intel® Many Integrated Core 

Architecture.  

 

Charles Congdon is a senior software engineer with Intel's Software and Services Group. 

He specializes in improving application performance and scalability and has written 

software and documentation for projects inside and outside Intel. Before joining Intel, 

Charles was a consulting software engineer for Oracle Corporation, where he 

concentrated on parallelism and 64-bit support in Windows* NT and OpenVMS® versions 

of the Oracle RDBMS on the Digital Alpha processors. 

 

Sumedh Naik received a Bachelor’s degree in Electronics Engineering from Mumbai 

University, India in 2009 and a Master’s degree in Computer Engineering from Clemson 

University in December 2012. He joined Intel in 2012 and has been working as an 

Software Engineer, focusing on developing collateral for Intel® Xeon Phi™ coprocessor.  

 

 

 

Loc Q Nguyen received an MBA from the University of Dallas, a master’s degree in 

Electrical Engineering from McGill University, and a bachelor's degree in Electrical 

Engineering from École Polytechnique de Montréal. He is currently a software engineer 

with Intel's Software and Services Group. His areas of interest include computer 

networking, computer graphics, and parallel processing.                

 

 

 

 

 

  



Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

30 

 

Notices 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO 

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY 

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND 

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND 

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF 

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 

OTHER INTELLECTUAL PROPERTY RIGHT.  

 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or 

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY 

SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS 

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND 

EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND 

REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF 

PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION 

CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN 

THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.  

 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must 

not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". 

Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or 

incompatibilities arising from future changes to them. The information here is subject to change without notice. 

Do not finalize a design with this information.  

 

The products described in this document may contain design defects or errors known as errata which may 

cause the product to deviate from published specifications. Current characterized errata are available on 

request.  

 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing 

your product order. 

 

Copies of documents which have an order number and are referenced in this document, or other Intel 

literature, may be obtained by calling 1-800-548-4725, or go to:  http://www.intel.com/design/literature.htm 

Intel, the Intel logo, Intel Cilk, Intel Xeon, Intel Xeon Phi, MMX, and VTune are trademarks of Intel Corporation 

in the U.S. and other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright© 2014 Intel Corporation. All rights reserved. 

OpenCL and the OpenCL logo are trademarks of Apple Inc and are used by permission by Khronos. 

 

  

http://www.intel.com/design/literature.htm


Intel® Xeon Phi™ Coprocessor DEVELOPER’S QUICK START GUIDE 

 

31 

 

Performance Notice 

For more complete information about performance and benchmark results, visit 
www.intel.com/benchmarks  

Optimization Notice 

 

 

Optimization Notice 

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 

optimizations that are not unique to Intel microprocessors.  These optimizations include SSE2, SSE3, 

and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, 

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. 

 

Microprocessor-dependent optimizations in this product are intended for use with Intel 

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel 

microprocessors. Please refer to the applicable product User and Reference Guides for more 

information regarding the specific instruction sets covered by this notice.  

 

Notice revision #20110804 

http://www.intel.com/benchmarks

